

CENTER for **NEUROTECHNOLOGY**

a National Science Foundation Engineering Research Center

A 6.25 Mbps, 12.4 pJ/bit DQPSK* Backscatter Wireless Uplink for the NeuroDisc Brain-Computer Interface

*Differential Quadrature Phase-Shift Keying

James Rosenthal

Ph.D. Student NSF Graduate Research Fellow University of Washington Dept. of Electrical & Computer Engineering jamesdr@uw.edu

Co-authors

Eleftherios Kampianakis Apoorva Sharma Prof. Matthew S. Reynolds

Motivation & Background NeuroDisc Design *In Vitro* and *In Vivo* Results Conclusions & Future Work

Science Motivation

Objective

Uplink raw neural samples* from a freely moving non-human primate (NHP) with minimal impact to the power budget

*Researchers require both low- and highfrequency signals

Backscatter achieves Mbps data rates at pJ/bit energy consumption

QPSK modulation encodes 2 bits per symbol

DQPSK modulation alleviates RX phase synchronization requirements

Collecting Neural Samples

NeuroDisc offers an energy efficient to alternative to conventional uplink methods

SD card: 1.24 nJ/bit at 80 Mbps 55 mm **NeuroChip-3**

NeuroDisc (DQPSK Backscatter): 12.4 pJ/bit at 6.25 Mbps

NeuroDisc

S. Zanos et al., "The Neurochip-2: an autonomous head-fixed computer for recording and stimulating in freely behaving monkeys," IEEE Trans. Neural Syst. Rehabil. Eng., vol. 19, no. 4, pp. 427–435, 2011.

Collecting Neural Samples

NeuroDisc offers an energy efficient to alternative to conventional uplink methods

IEEE 802.11n Wi-Fi: 8 nJ/bit at 100 Mbps Bluetooth Low Energy (BLE): 10 nJ/bit at 1 Mbps UWB [Neuron 2014]: ~180 nJ/bit at 200 Mbps

nRF24L01+ BLE

Sparkfun.com

NeuroDisc (DQPSK Backscatter): 12.4 pJ/bit at 6.25 Mbps

NeuroDisc

1. Motivation & Background

2.NeuroDisc Design

In Vitro and In Vivo Results Conclusions & Future Work

NeuroDisc System Overview

Complete system could be integrated onto a single chip

Neural front-end can capture local field potentials and neural spikes

Digitized data from the neural front-end

NeuroDisc BCI

DQPSK state machine encodes the data into modulator control signals

RF Uplink: Modulator

GPIO control signals actuate the RF switch while consuming only 78 μ W (23 μ A @ 3.3V)

ADG904 RF switch using discrete components to implement a DQPSK constellation

RF Uplink: Modulator

S. J. Thomas et al., "Quadrature amplitude modulated backscatter in passive and semipassive UHF RFID systems," IEEE Trans. on Microwave Theory and Techniques, vol. 60, no. 4, pp. 1175–1182, April 2012.

RF Uplink: Modulator

S. J. Thomas et al., "Quadrature amplitude modulated backscatter in passive and semipassive UHF RFID systems," IEEE Trans. on Microwave Theory and Techniques, vol. 60, no. 4, pp. 1175–1182, April 2012.

Full-duplex External System

Block diagram of the full-duplex external system

Full-duplex External System

Open-source software-defined radio system with self-jammer cancellation

All parts are COTS except for Arduino DAC shield

Receiver sensitivity of -86 dBm at 6.25 Mbps

Motivation & Background NeuroDisc Design

In Vitro and In Vivo Results Conclusions & Future Work

In Vitro Results

Good agreement between the NeuroDisc and the NC3

NeuroDisc and NeuroChip-3 simultaneously measured pre-recorded neural data

Experimental setup: Receiver had direct line-of-sight at 0.3 m. Uplink rate was 6.25 Mbps

Comparison of the same pre-recorded data wirelessly uplinked by the NeuroDisc and saved on the NC3 SD card

S. Zanos et al., "The Neurochip-2: an autonomous head-fixed computer for recording and stimulating in freely behaving monkeys," IEEE Trans. Neural Syst. Rehabil. Eng., vol. 19, no. 4, pp. 427–435, 2011.

In Vivo Results

Successful measurement and uplink of neural spike data from an anaesthetized pigtail macaque (*Macaca nemestrina*)

Photo of in vivo measurement setup

All *in vivo* measurement procedures were conducted under approval by the UW IACUC

Experimental setup: Receiver had direct line-of-sight at 0.3 m. Uplink rate was 6.25 Mbps.

One of eight channels measured at 5 kHz with BPF between 1 Hz – 2 kHz

Motivation & Background NeuroDisc Design In Vitro and In Vivo Results Conclusions & Future Work

Work in Progress

25 Mbps uplink for 16 channels at 20 kSps

 $\nabla \nabla \nabla$

Work in Progress

Bluetooth Low Energy (BLE) Compatible Backscatter Communication System for Wireless Sensing

A	Wireshark BLE Backs	catter Test.pcapng	- 🗆 🗙
File Edit View	Go Capture Analyze Sta	tistics Telephony W	fireless Tools Help
🛋 🗏 🛞 🔒 🗅 🕱 🛅 9. 🗢 🗢 🕾 🖗 💆 🚍 🚍 9. 9. 9. 9. 11			
bile.advertising_address == 14:12:07:21:44:08			
Interface COM20	💌 Devici 🖌 💌 Passko 🗔 A	dv H 🛄 🛛 Help	Defaults Log
No. Time	Source	Length CRC	Device Name ^
1659 38.557	181 14:12:07:21:44:08	45 OK	,0011991
1661 38.668	390 14:12:07:21:44:08	45 OK	,0011992
1666 38.871	592 14:12:07:21:44:08	45 OK	,0011995
1670 38.975	945 14:12:07:21:44:08	45 OK	,0011996
1673 39.1862	210 14:12:07:21:44:08	45 OK	,0011998
1676 39.298	515 14:12:07:21:44:08	45 OK	,8011999
1678 39.4893	212 14:12:07:21:44:08	45 OK	,0012000
1681 39.527	112 14:12:07:21:44:08	45 OK	,0012001
1683 39.6440	874 14:12:07:21:44:08	45 OK	,0012002
1684 39.752	783 14:12:07:21:44:08	45 OK	,0012003
1687 39.862	027 14:12:07:21:44:08	45 OK	,0012004
1689 39.867	212 14:12:07:21:44:08	45 OK	,0012005

ADC data encoded as ASCII characters

Analog sensor data is uplinked in BLE-compatible advertising packets to any unmodified BLE receiver

Pally BLE Scanner

Sensor data can be reconstructed at the receiver

J. Rosenthal and M.S. Reynolds, "A 158 pJ/bit 1.0 Mbps Bluetooth low Energy (BLE) compatible backscatter communication system for wireless sensing," IEEE Wireless Sensor Networks Conference 2019. (accepted)

Acknowledgements

- Co-authors:
 - Eleftherios Kampianakis
 - Apoorva Sharma
 - Prof. Matthew S. Reynolds
- UW Depts. of Biophysics & Physiology, BioE
- Washington National Primate Research Center

The project described was supported in part by Award Number EEC-1028725 from the National Science Foundation, as well as by the National Science Foundation Graduate Research Fellowship Program under Grant No. DE-1762114 (J.R.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Science Foundation.

Thank you for your time!

Questions?

CENTER for NEUROTECHNOLOGY a National Science Foundation Engineering Research Center

